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Qualitative or Quantitative Differences?

Latent Class Analysis of Mathematical Ability
for Special Education Students

Xiangdong Yang, Julia Shaftel, Douglas Glasnapp, and John Poggio
University of Kansas

The current article investigates whether the mathematics achievement of students in special education
can be used to identify those who share common cognitive skills that may not be in concordance with
their disability labels. Latent class analysis of a comprehensive test of mathematics taken by fourth-
grade students with various disabilities reveals that a model with 2 latent classes is adequate to char-
acterize the latent structure of the data. A parallel relationship of response profiles across the 2 classes
suggests differences in the levels of mathematical ability (quantitative), rather than differences in the
type of mathematical ability (qualitative), between the 2 latent classes in terms of generic mathemat-
ical proficiency. Cross-validation on a separate data set with careful matching of content areas within
the math test verified this conclusion. Although a significant relationship exists between the identified
latent classes and various disabilities, the analysis also found common mathematical problem-solving
behaviors across disability categories. Implications for intervention and limitations of the current study

are discussed.

Students with disabilities comprise a protected population for
which particular educational and instructional interventions
are expected to be provided. Ideally, remedial interventions
should be individualized to each student’s need. This is the
goal of the Individuals with Disabilities Education Act of 1990
(IDEA) and embodied in the Individualized Education Pro-
gram (IEP) process, but complete individualization is usually
impossible due to limited resources and the need for teachers
trained to provide services tailored to specific groups, such as
mobility training or Braille for students with visual impair-
ment. As aresult, students who meet categorical eligibility cri-
teria specified in IDEA and further delineated by relevant state
special education laws and procedures are sometimes grouped
for instruction rather than receiving individual attention.

The disability categories defined by IDEA and state laws
were formed on historical and political, rather than empirical,
foundations. Categories are typically defined on the basis of
such characteristics as type of impairment (e.g., perceptual,
language, physical, cognitive) or etiology (e.g., traumatic brain
injury). Emotional/behavioral disorders are defined by mal-
adaptive behaviors and moods that differ from the norm for
age peers, and specific learning disabilities are defined by dif-
ferences among abilities and achievement within the individ-
ual. Some categories (e.g., perceptual impairments, autism,
specific learning disabilities, traumatic brain injury) match
medical or psychological diagnoses, whereas others (e.g., other

health impairment, physical disabilities) cover a range of diag-
nostic conditions. Several broad categories defined by IDEA
and state law (e.g., noncategorical identification, developmen-
tal delay, other health impairment) are used as catch-alls for stu-
dents who clearly display impairment but cannot be assigned
a definitive label because age makes specific diagnosis unre-
liable or because the nature of the problem does not fit into an-
other category.

Because most of the disability categories are broadly de-
fined, characteristics often intersect, and a student may meet
the criteria for more than one type of disability. For example,
students with behavioral/emotional impairment and specific
learning disabilities frequently have dual diagnoses. Students
with perceptual or physical impairments span the normal range
of cognitive and learning abilities. Although below-average
cognitive functioning is an exclusionary factor to identify spe-
cific learning disabilities, studies investigating special educa-
tion placement decision-making have revealed failures to
differentiate students with mental retardation and a consequent
overuse of the learning disabilities category as more socially
acceptable for students who show cognitive deficiencies (Got-
tlieb, Alter, Gottlieb, & Wishner, 1994; MacMillan, Gresham,
& Bocian, 1998). Recent research also has identified signifi-
cant overlaps between students with language impairments
and reading disabilities (McArthur, Hogben, Edwards, Heath,
& Mengler, 2000), language impairments and emotional/
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behavioral disorders (Caulfield, Fischel, DeBaryshe, & White-
hurst, 1989; Griffith, Rogers-Adkinson, & Cusick, 1997; Top-
pelberg & Shapiro, 2000), and comorbidity among these three
disabilities (Tomblin, Zhang, & Buckwalter, 2000).

In one well-investigated area, the distinction between
special education and general education has been called into
question. In reading research spanning the past 2 decades, re-
peated studies have attempted to distinguish between students
with specific reading disabilities who have IQ-achievement
discrepancies and those without discrepancies. The reading
skills profiles of these two groups are remarkably similar, as
are the interventions that are most effective (Francis, Shaywitz,
Stuebing, Shaywitz, & Fletcher, 1996; Shaywitz, Fletcher,
Holahan, & Shaywitz, 1994; Siegel, 1989; Stage, Abbott, Jen-
kins, & Berninger, 2003; Stuebing et al., 2002). A general
conclusion of this body of research is that reading disabilities
occur in children at all levels of cognitive functioning who
may or may not meet special education eligibility criteria. In-
structional interventions should target the specific reading dif-
ficulties or deficiencies that students experience, regardless of
their eligibility for special education services.

Special education categories, then, are likely to be het-
erogeneous rather than homogenous, and the dividing lines
are blurred even between some special education and general
education groups. According to Brinker (1990), special edu-
cation categories are primarily administrative units: “We have
persisted in our maintenance of categories of exceptionality
that encompass individual differences that vary as greatly as
the differences between categories” (p. 182). Further, special
education classification does not stipulate services or place-
ment options for individual students (Brinker, 1990). If special
education classification does not provide sufficient reliable in-
formation to prescribe effective services, what does?

Another research thread involving commonalities among
student groups has been the search for aptitude—treatment in-
teractions (ATIs). ATIs are expected to occur when instruc-
tional programs or remedial interventions target the individual
needs or weaknesses of certain students while not addressing
those of other students. ATIs are at the heart of instruction for
groups of students who share common characteristics. Among
the aptitudes studied in ATI research have been attributional
style, language and cognitive abilities, strategy use, and read-
ing difficulty (Speece, 1990), as well as psycholinguistic pro-
cessing and modality preferences among students with
learning disabilities (Vaughn & Linan-Thompson, 2003).

ATI research has had only limited success in identify-
ing useful interventions (Deno, 1990; Lloyd, 1984; Vaughn &
Linan-Thompson, 2003). For example, research on cooperative
learning in mathematics has supported the intervention’s ef-
fectiveness for two groups—special needs and general educa-
tion students—without any interaction effect differentiating
the groups (Slavin, Madden, & Leavey, 1984). A study on the
effectiveness of integrated and segregated preschool classrooms
confirmed earlier findings that integrated environments were
more beneficial for higher functioning students, whereas seg-

regated settings were better for lower functioning students
(Cole, Mills, Dale, & Jenkins, 1991). That study measured only
the severity of disability among young children identified as
developmentally delayed, a heterogeneous category used for
deficits in cognitive, language, social, gross motor, or fine motor
development. For students with learning disabilities, individ-
ualized instruction based on processing problems, modality
matching, and multisensory instruction has failed to show
positive effects on academic achievement (Vaughn & Linan-
Thompson, 2003).

In sum, ATT research methods have not generally proved
useful for the study of individual differences. Aptitude differ-
ences may exist, but current ATT methodology is so fraught
with sources of error in both conceptualization and measure-
ment as to be rendered useless. Many specific difficulties with
ATT research have been catalogued. Although Cronbach de-
fined and proposed the ATI model for research on individual
differences in 1957, he had abandoned the ATI model by
1975 due to intractable measurement problems (Reschly &
Ysseldyke, 2002). Fuchs and Fuchs (1986) delineated four
problems with ATTI research:

1. Knowledge of student characteristics and apti-
tudes is incomplete.

2. Tests of student characteristics are not techni-
cally adequate.

3. Test administration may not be unbiased for
children with different characteristics.

4. We cannot specify all the possible interactions
among students, teachers, environment, and
possible interventions.

Speece (1990) pointed out the “weak conceptualizations” of
learning problems and, by extension, aptitudes defined and
studied by researchers (p. 140). In addition to echoing Fuchs
and Fuchs’ (1986) concern about the adequacy of the mea-
surement instruments used in ATI studies, Speece suggested
that the empirical failure of much ATT research is due to the
heterogeneous makeup of the students within an aptitude
group, in which other meaningful attributes are not defined or
measured. Measurement difficulties are compounded by
methodological problems that occur when high intraclass cor-
relations, such as for students nested within classes or schools,
are not considered. This may lead either to masking of true
interaction effects or to spurious findings that are in fact due
to other causes, such as group effects that violate the as-
sumption of independence of measurement at the level of the
individual (Sheehan & Han, 1996). Finally, ATIs are based on
correlational effects that apply to groups of students who pre-
sumably share an aptitude, but the effects are not necessarily
prescriptive at the individual student level and do not consider
the individual student’s interaction with a particular classroom
environment (Brinker, 1990; Deno, 1990; Sheehan & Han,
1996; Speece, 1990). ATIs have relied on the a priori classifi-
cation of students into groups, using expensive diagnostic pro-
cedures involving instruments with questionable predictive
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powers and then extending generalizations, which are no
more than probable predictions about the characteristics of the
group, to individual group members with unfounded certainty.
As Deno (1990) pointed out, “General policy decisions can be
made on such group information, but specific programming de-
cisions cannot” (p. 165).

ATI-based thinking has not entirely lost its grip on spe-
cial education practice. Vaughn and Linan-Thompson (2003)
stated that interventions for students with learning disabilities
based on the cognitive process deficits that were hypothesized
to underlie their learning problems failed to influence aca-
demic outcomes and detracted from instruction in areas of
academic weakness. Modality-based interventions, preferred
learning styles, and multisensory approaches such as tactile-
kinesthetic reading instruction have not been shown to be
effective in improving outcomes for students with learning
problems. Nonetheless, these remedial methodologies for learn-
ing disabilities have become broadly associated with the field,
and their use persists.

Given the heterogeneity of special education classifica-
tions and the failure of research based on individual aptitudes
to show differential treatment effects as a function either of
disability type or of other student characteristics, questions
arise about whether groups classified by disability are indeed
similar and how these similarities might be revealed. Do
students within disability classifications have aptitude or
achievement commonalities? Can distinct profiles of ability
be identified within or across categories? Can special educa-
tion students be classified into groups that share common char-
acteristics of intellectual skills or learning abilities? Do such
groups form along special education categorical lines or ac-
cording to some other pattern? The current study will use out-
come data to investigate whether students with disabilities form
distinct groups on the basis of achievement.

The purpose of this study was to investigate the differ-
entiation of mathematical abilities of students with different
categories of disability using latent class analysis (LCA). The
primary research hypothesis is that some latent classes, or
groups, exist in the special education student population. Each
of the classes represents a distinctive pattern of mathematical
problem-solving behaviors. Members of the same class share
the same cognitive characteristics of mathematical problem
solving. The membership of these special education students
in the latent classes may or may not be consistent with their
disability categories. Specifically, two questions were of in-
terest:

1. Do special education categories differentiate
students with disabilities from each other in
terms of the ability to solve different categories
of mathematics problems?

2. If so, are the differences in qualitatively differ-
ent mathematical skill profiles or quantitatively
different levels of overall mathematics ability?

Theoretical Framework

This study explores the heterogeneity of a population of
fourth-grade students with disabilities. The authors applied
LCA, as well as item response theory (IRT), to achieve this
purpose. Justification and description of both methodologies
are given in the next section.

Latent Class Analysis

Heterogeneous populations are common in such social sci-
ences as education and psychology. The heterogeneity is usu-
ally caused by existing subpopulations in the total population.
Participants within a subpopulation are more similar to each
other, whereas participants across subpopulations are usually
less similar. In this case, statistical inferences obtained from
procedures that assume homogeneous populations may be mis-
leading, a phenomenon commonly referred to as Simpson’s
paradox (Agresti, 1996; Simpson, 1951).

Heterogeneity of the target population can be handled
by one of two approaches, depending on whether the source
of heterogeneity is known (Luke & Muthén, in press). If a
source of heterogeneity is known, the subpopulation can be
identified on the basis of that source. For example, if gender is
known as a source of heterogeneity, the characteristics being
investigated in the study can be statistically compared across
the subpopulations defined by gender. Common statistical
methods that may be applied in this case include the -test,
ANOVA or MANOVA, regression, and multigroup common
factor analysis (MG-CFA; Joreskog, 1971; Stevens, 1992). If
the source of heterogeneity is unknown, subpopulations can-
not be defined explicitly. As Luke and Muthén stated, in this
case, subpopulations are called latent classes because they are
not distinguishable on the basis of observed features. Statis-
tical methods that may be suitable in this case include LCA
(Lazarsfeld & Henry, 1968; McCutcheon, 1987; Vermunt &
Magidson, 2002a), cluster analysis (Everitt, 1993; Kaufman
& Rousseeuw, 1990), latent profile analysis (Vermunt & Mag-
idson, 2002a), and finite mixture models (McLachlan & Peel,
2000). Luke and Muthén provide a more comprehensive sur-
vey of these methods.

Both cluster analysis and LCA can be applied to classify
similar participants into classes, but the latter has several
advantages over the former (Vermunt & Magidson, 2002a,
2002b). First, in traditional cluster analysis, the number of clus-
ters is arbitrary. In LCA, on the other hand, theoretical for-
mulations for each cluster can be specified directly and tested
empirically by the dataset under investigation. Moreover, LCA
allows more rigorous methods to be applied in comparing al-
ternative models, such as likelihood-ratio tests, Akaike’s in-
formation criteria (AIC), Bayesian information criteria (BIC),
or Consistent AIC (CAIC). Second, LCA is robust to differ-
ent scaling of the observed variables, which is always an issue
in traditional cluster analysis. Third, LCA takes into account
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the uncertainty of a subject’s membership in a latent class; tra-
ditional cluster analysis cannot do this. Results from a simula-
tion study showed that LCA outperformed traditional cluster
analysis even in the settings in which the simulated data were
favorable to cluster analysis (Vermunt & Magidson, 2002b).
On the other hand, if applied in an exploratory fashion, LCA
is similar to cluster analysis so that LCA is often labeled as
mixture likelihood approach to clustering (McLachlan & Bas-
ford, 1988; Everitt, 1993), model-based clustering (Banfield
& Raftery, 1993; Bensmail, Celeux, Raftery, & Robert, 1997;
Fraley & Raftery, 1998), mixture-model clustering (Jorgensen
& Hunt, 1996; McLachlan, Peel, Basford, Adams, 1999), and
latent class clustering analysis (Vermunt & Magidson, 2000,
2002a).

In short, LCA allows the researcher to identify a set of
mutually exclusive and exhaustive latent classes from the
measurement of a set of discrete variables (McCutcheon,
1987). Classical LCA includes three basic assumptions:

1. Each participant can be classified into one and
only one latent class.

2. The set of observed variables is a set of imper-
fect measures of these latent classes.

3. Given a participant’s class membership, the
probability of answering one observed variable
is independent of the probabilities of answering
other observed variables, an important assump-
tion called local independence (see Vermunt &
Magidson, in press, for various relaxations of
this assumption).

Based on the three assumptions, the latent class (LC)
model for dichotomous data can be formulated as the follow-
ing: Suppose a set of n dichotomous items were administered to
a sample of N participants and x; = 1 whenitemi,i=1,2...
n, is correctly solved and x; = 0 otherwise. P; denotes the prob-
ability of getting item i correct, and, therefore, the probability
of getting item i incorrect is 1 — P;. Assume there are & latent
classes in the sample, and denote P;; as the probability of get-
ting item 7 correct given a participant in the kth latent class. If
further assuming that responses are independent within a la-
tent class, then P,, the probability of getting a given response
pattern (r) is given as

K K n
P(r)=2”kP(r|k)=Z”kH (=P )"
k=1 P B

where P(rlk) is the probability of getting the response pattern
r given the kth class. 7, is the probability of being in the kth
latent class. Equivalently, m; can be referred to as the latent
class proportion or the size of the kth latent class. When ap-
plied to real data, both 7} and P;; are parameters that need to
be estimated.

If 7 and Pj; are specified as free parameters to be esti-
mated, the corresponding LC model is called unrestrained. In
some situations, however, the unrestrained LC model is not
identifiable, which means that either a unique set of parame-
ter estimates is not present (Vermunt & Magidson, in press)
or too many parameters need to be estimated so that no de-
grees of freedom are available. A common practice in this case
is to constrain certain model parameters to a fixed value or to
be equal to each other to achieve model identification (For-
mann, 1985). Once the model is identified and parameters are
estimated, the nature of each class can be determined by plot-
ting Pj;, for the given class and examining the corresponding
profile.

Important issues in LCA are model fit and model selec-
tion. Two approaches are usually applied to evaluate model fit.
One approach is to directly compare the differences between
observed and predicted. Two commonly used statistics within
this approach are the Pearson chi-squared statistic 2 and the
likelihood-ratio chi-squared statistic G2 (Agresti, 1996). Both
statistics are special cases of a family of test statistics known
as power divergence statistics (Cressie & Read, 1984; Read &
Cressie, 1988). Cressie and Read also proposed a test statis-
tic that compromises between )2 and G2. For all three test sta-
tistics, a small value of the statistic relative to its degrees of
freedom, which corresponds to a large p value, indicates a
good model fit. A special case of this approach is when the
sample size is relatively small compared to the number of mea-
sured variables—specifically, when the expected frequencies
in some possible combinations of the variables are small (< 5)
or zero. In this case, the data are called sparse data. Then the
aforementioned test statistics do not work well and the ob-
tained p values of model fit cannot be trusted (Dayton, 1998;
Vermunt & Magidson, in press). Instead, empirical p values
can be obtained by evaluating empirical distributions of the
test statistics using the bootstrapping method (Efron & Tib-
shirani, 1993).

The second approach is to compare the relative goodness-
of-fit among different models. There are two different situa-
tions within the second approach. One situation is when the
two models being compared are nested, one within the other.
Two models are nested when the simpler model between the
two is obtained by imposing certain constraints on one or
more parameters in the more complex model (Loehlin, 1998).
For example, the LC model specified in the prior equation is
an unrestrained model with k latent classes, in which all the
P are different parameters. We can then obtain a simpler
model by constraining the P;; in, say, class 3, to be equal to
each other, denoted as P;3 =P,3 =...=P,3.In this case, the
simpler model is nested in the unrestrained model with n — 1
fewer parameters. Because the more complex model contains
more parameters than the simpler one, it will fit the data bet-
ter than or as well as the simpler model. For each model, the
corresponding test statistic G2 can be calculated. Statistical
theory states that the difference between the two G2s has an
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approximate chi-square distribution, with degrees of freedom
of the distribution equaling the difference in the number of
parameters between the two models. In the above example,
this degree of freedom is n — 1 because the complex model
has n — 1 more parameters than the simpler one. Large values
for the difference between the two G2s relative to the degree
of freedom, corresponding to a small p value, indicate that the
goodness-of-fit of the more complex model is statistically bet-
ter than that of the simpler one. It should be pointed out that
the two models in our example have the same number of la-
tent classes, with constraints being imposed on within-class
parameters. Although counterintuitive, LC models with dif-
ferent numbers of classes are not nested one within the other
(Dayton, 1998; McCutcheon, 1987; Vermunt & Magidson,
2002a). This is, in fact, the second situation for comparing
goodness-of-fit between models (i.e., model selection when
they are not nested). The statistic using G2 difference does not
work well in this case. Popular approaches in this situation
are to use information criteria, such as AIC, BIC, or CAIC
(Vermunt & Magidson, 2002a). The idea behind all three in-
formation criteria is the same: The goodness-of-fit of a given
model is penalized for its complexity (Loehlin, 1998). For
models with the same level of goodness-of-fit, the one with
fewer parameters is favored because it is more parsimonious.
Smaller values of the information criteria usually mean bet-
ter fit. Results from different information criteria may con-
tradict each other. In that case, BIC is preferred because
research has shown that BIC is more consistent (Li & Nyholt,
2001) and tends to select a more parsimonious model than
AIC (Lin & Dayton, 1997).

Item Response Theory

Since the 1950s, item response theory (IRT) has become the
new theoretical basis for educational and psychological mea-
surement (Embretson & Reise, 2000). The primary question
in IRT focuses on how the probability of a correct response
to an item relates to examinees’ mental characteristics, such
as intelligence, academic proficiency, or attitude, and the
item’s properties, such as item difficulty, item discrimination,
and so forth. Such a relationship is usually formulated through
an item response function (IRF) or item characteristic curve
(ICC). As many as three aspects of an item’s characteristics
can be captured by the ICC (e.g., item difficulty, item dis-
crimination, guessing). /tem difficulty is how hard an item is.
Higher ability is needed to solve more difficult items. Item
discrimination indicates how sensitive the probability of an-
swering an item correctly is to changes in an examinee’s abil-
ity level. Items with high discrimination are favored over
items with low discrimination because the former is more sen-
sitive to the differences among examinees of various ability
levels; poorly discriminating items should be eliminated from
the test. The guessing parameter indicates the probability of
guessing the item correctly by examinees with very low abil-
ity. Items with high values of the guessing parameter ¢ should

also be eliminated from the test (Embretson & Yang, in press).
Specialized computer programs such BILOG-MG3 (Zimow-
ski, Muraki, Mislevy, & Bock, 2002) can be used to obtain es-
timates for these parameters.

Method

Measurement

Mathematical ability was measured by responses to a state-
mandated mathematics assessment in a midwestern state.
Items in the assessment were designed to measure the state’s
curricular standards for mathematics. The mathematics cur-
riculum standards are composed of three levels: standard,
benchmark, and indicator. A standard is a “general statement
of what a student should know and be able to do in academic
subjects” (Kansas State Board of Education, 1999). The state’s
standards include four mathematics content areas: number
and computation, algebra, geometry, and data. Benchmarks are
more specific than standards. They are used to define what the
student must be able to do to meet the standard. Indicators list
the detailed knowledge or skills that students should demon-
strate in order to meet the benchmark (see Table 1 for the
benchmarks included in each standard). Within the content
specification, two categories of items, knowledge and appli-
cation, are included in the test. Items that measure knowledge

TABLE 1. The Kansas Curricular Standards
for Mathematics

Item
Standard Benchmark Set-1 Set-2
Number & Number sense NP1I3  NP4I12
computation  Number systems NP3I9 NP1I5
and their properties
Estimation NP2I12  NP3I12
Computation NP1I12  NP1I1
Algebra Pattern NP2I1  NP2I10
Variables, equation, and NP2I2 NP2I2
inequality
Functions NP2I4 NP2I6
Models NP2I8 NP2I7
Geometry Geometry figures and NP3I14 NP314
their properties
Measurement and NP3I1 NP3I12
estimation
Transformational geometry ~ NP3I11  NP3I10
Geometry from algebraic NP3I8 NP3I8
perspective
Data Probability NP4I9 NP4I9
Statistics NP4I2 NP4I8
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are those that measure mathematical facts, concepts, or solu-
tions of one-step story problems; application items measure
how to apply mathematical knowledge to a real-world situa-
tion or to carry out a procedure such as computation.

The state mathematics assessment for fourth grade was
used in this study. This test was designed by following ac-
cepted principles of standardized test development, including
item preparation by content area teachers at the grade levels
tested, large sample field tests, CTT and IRT item analysis,
differential item functioning (DIF) analysis, and bias review.
There are 52 items in the test. Table 2 lists examples of items
that were designed to measure each of the four content areas
and gives a short description of each item in terms of the spe-
cific content area it is supposed to measure.

Sample and Data

The goal of this study was to explore within the population of
special education students the existence of different latent
classes in which students share the same cognitive characteris-
tics with respect to mathematical proficiency. Therefore, only
identified special education students were included. All stu-
dents with disabilities in fourth grade across the state during
the 2001-2002 academic year were included in the analysis.
Twelve categories of disability were included in the data set:
hearing impairment, visual impairment, speech/language im-

TABLE 2. Example Items for Each Content Area

pairment, physical impairment, specific learning disability,
emotional disorder, mental retardation, autism, traumatic brain
injury, deaf-blindness, noncategorical identification, and other
health impairment. The students in this study were identified
as having disabilities according to state special education pro-
cedures and criteria (Kansas State Department of Education,
2001). The State Department of Education monitors identifi-
cation and placement procedures, as well as special education
services, for compliance on a routine basis. The disability cat-
egory for each student was coded on the student’s answer sheet.
The number of students within each of the disability categories
is given in Table 7.

There were 3,289 students with disabilities in the data
set: 2,224 boys and 1,065 girls. Responses from all students
with disabilities who completed all four parts of the 52-item
test form were evaluated for missing data. Among these ob-
servations, 608 cases had responses to at least 1 of 52 items
that were either missing or multiply marked. These cases were
not included in the present analysis. As a result, 2,681 cases
were used in the actual analysis.

Rationale for the Analysis

The research questions for this study were answered through
statistical analysis in three stages. In Stage 1, because the hy-
pothetical sources for the existence of different latent classes

Standard Example item Item description
Number & Susan bought 24 books for $29.99 each. This item measures the student’s ability to determine if
computation About how much did she spend? a problem calls for an exact answer or an approximate
A) $400 B) $550 answer and perform the appropriate computation.
C) $750 D) $900
Algebra A dog can run 30 feet in 2 seconds, This item measures the student’s ability to recognize
45 feet in 3 seconds, and 75 feet in relationships between whole numbers.
5 seconds. If this relation continues,
how many feet will the dog run in
9 seconds?
A) 100 B) 135
C) 145 D) 180
Geometry Which shape was not used to form This item measures the student’s ability to recognize and
this house? describe geometric figures and their basic properties.
A) rectangle
B) triangle p’\
C) parallelogram O |_|
D) circle
Data Five students in John’s class have the This item measures the student’s ability to use basic

following weights: 45, 40, 38, 41, 46.

What is the range among them?
A)6 B) 8 C) 38 D) 46

statistical measures for a whole number data set, such as
mean, mode, range, and so forth.
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are common cognitive characteristics, which are unknown a
priori, the LC modeling procedure was applied to identify
such subpopulations. Various LC models were fitted to the
data. Rigorous model fit and selection procedures were used
to choose the best model. Then, the number of the subpopu-
lations, as well as the probabilities of their occurrences, were
estimated as model parameters.

In Stage 2, the nature of each subpopulation was exam-
ined by inspecting the characteristics that the subpopulation
exhibited in terms of mathematical problem solving. This was
done by plotting the class-specific item response probabilities
P;;. against each item across the classes. Many possibilities
exist for profile differences across classes. One possibility is
that the profile for one class would cross over the profile for
another class. For example, one class might show high prob-
abilities of answering computational items correctly and low
probabilities of answering geometric items correctly, whereas
for another class the reverse pattern might be found. Because
computational and geometric items usually tap different as-
pects of mathematical ability (the former sources on numerical
operation, whereas the latter sources on spatial manipulation),
such a difference is qualitative. It indicates that these two
classes exhibit different combinations of various components
of mathematical ability. If, on the other hand, the profiles from
the two classes are parallel to each other and the probabilities
of answering all items correctly for one class are consistently
higher than those for the other class, the difference can be re-
garded as quantitative. It would indicate that one class exhibits
higher levels on all components of mathematical ability.

In Stage 3, the relation between the identified latent sub-
populations and various categories of disability was examined
through statistical testing procedures, specifically the chi-
square test. This is possible because the membership of each
participant among the set of latent classes identified can be
calculated through the LCA. If the cognitive profile of each
student was completely determined by his or her disability cat-
egory and different categories showed completely different pro-
files, the number of subpopulations identified through LCA
would equal the number of disability categories. A perfect re-
lationship would exist between the two. The corresponding
theoretical value of chi-square statistic would be positively in-
finite. If, on the other extreme, the cognitive profile of each
student had nothing to do with his or her disability category,
the identified latent classes would be independent of students’
disability categories and the corresponding theoretical value
of chi-square statistic would be zero. More realistically, we may
expect some relation between the identified latent classes and
the set of disability categories. For example, students within cer-
tain disability categories may tend to be in certain classes.

Model Selection and Cross Validation

The data were submitted to the program WINMIRA2001 (Von
Davier, 2001) to carry out the LCA. Because the number of
possible response patterns was much larger than the number

of examinees, the data were relatively sparse. As mentioned
earlier, the chi-square p-value approximation for the goodness-
of-fit statistics is not appropriate as a model selection crite-
rion in this case. Instead, a parametric bootstrap approach was
used to calculate the fit statistics, and the empirical values of
both Creiss-Reid and Pearson chi-square statistics were con-
sidered if nested LC models were compared.

As mentioned earlier, for LC models with different num-
bers of classes, the chi-square difference test is not appropri-
ate. Instead, various information criteria (e.g., AIC, BIC,
CAIC) were used as model selection criteria, combined with
the bootstrap goodness-of-fit statistics. The model with the
minimum values of the information criteria is considered to
be the model of choice. When the minimal values among the
three information criteria are inconsistent, the model with
minimal value of BIC is selected as the preferred model.

No previous research was available in terms of differ-
entiation of mathematical ability among different categories
of disability; thus, the whole test was split into two equivalent
halves to carry out the cross validation. The split was based
on the three levels of standards. In the following discussion,
the two data sets are named half-1 and half-2, respectively.

Results

Initial Results From Latent Class Analysis

Unrestrained LC models with one, two, three, four, and five
classes were fitted to the data in half-1. Table 3 presents the
information criteria and the goodness-of-fit statistics obtained
from the parametric bootstrapping method. Minimum values
of AIC, BIC, and CAIC are shown in bold. Note that the model
with one class provides poor fit to the data (both empirical p-
values of Cress Reid and Pearson chi-square from parametric
bootstrapping method are less than 0.05). This suggests that
the population of the students with disabilities is not ho-
mogenous. Further identification of the true structure in the
data is needed. Although the goodness-of-fit statistics for all
other models in Table 3 appear adequate, the model with three
classes has the minimal value of BIC and CAIC. Note that the
model with five classes, which is a more complex model, has
the minimal value of AIC. Because the more parsimonious
model is preferred, the model with three latent classes is con-
sidered the model of choice.

Item difficulty profiles for the LC model with three
classes are depicted in Figure 1. Each line in the figure repre-
sents the item difficulties for students within that specific
class. Note that the same item shows different difficulties for
different classes. Items appear more difficult for class 1 and less
difficult for class 3, but moderately difficult for class 2. An
interesting feature of the item profiles is that they are almost
parallel to each other across the three classes, which means
that the differences among classes are not qualitative but quan-
titative. The classes are different in their abilities: Class 1 has
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TABLE 3. Models Fitted to the Data half-1

Empirical p value using
parametric bootstrap method

Model AIC BIC CAIC Cress Reid Pearson y2
LCM with 1 class 91800.27 91954.21 91980.21 0.000 0.025
LCM with 2 classes 87654.11 87967.92 88020.92 1.000 1.000
LCM with 3 classes 86958.24 87431.9 87511.9 0.825 0.925
LCM with 4 classes 86886.93 87520.45 87627.45 0.950 0.925
LCM with 5 classes 86852.1 87645.53 87779.53 0.725 0.900

Note. AIC = Akaike’s information criteria; BIC = Bayesian information criteria; CAIC = Consistent Akaike’s information criteria; LCM = Latent class model. Boldface indicates

minimum values.
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FIGURE 1. Item difficulty profiles for model with three latent classes.

the lowest ability because items have relatively high difficulty
parameters for this class, and class 3 has the highest ability.

Item Response Theory Analysis

Before interpreting the nature of each class and making a con-
clusion based on Figure 1, a more careful inspection reveals
that several items do not function well. For example, the item
labeled np3il2, as well as several other items within that
neighborhood, has very high difficulty parameters for all the

classes. Further inspection reveals that these items do not fit
the model in terms of the Q index, which is an item-fit index
calculated in the program WINMIRA?2001. To investigate the
properties of these items, the data in half-1 were submitted to
BILOG-MG3 using two- and three-parameter logistic mod-
els. Results from the two-parameter logistic model confirmed
that these items have very low discrimination parameters
(most of their discrimination parameters are about 0.16 com-
pared to the mean values of the parameters, which is near 1.0).
Estimates from the three-parameter logistic model, however,
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showed that their discrimination parameters were acceptable,
but with relatively high guessing parameters (about 0.3). The
item np3il3 has a guessing parameter as high as 0.46, which
means that nearly one half of the students can correctly an-
swer this item just by guessing.

Latent Class Analysis After
Scale Examination

Scale Reconstruction. Results from item response the-
ory analysis of half-1 items reveal that some of the items in
the test do not function well for this population. Thus, rather
than continue with the planned cross-validation using half-2
items, all 52 items in the test were reexamined and two dif-
ferent sets of items were selected. Each item in the two new
sets of items was selected on the basis of its psychometric
properties (i.e., item difficulty, discrimination, and guessing
parameters) and its correspondence to the four mathematics
content areas. The last two columns of Table 1 show the two
sets of items, each having 14 items, denoted as set-/ and set-2.
Note that four items are identical in the two sets: np2i2, np3i4,
np3i8, and np4i9. When only one item measured a specific
content area, the item was used in both item sets.

Content-Specific Latent Class Analysis. Several LC
models were fitted to the data for each of the four content
areas. Only items that measured the given content area in set-
1 were included in each analysis, except for the last content
area. In the fourth content area, data, only one item, np4i9,
measures probability, and two items measure statistics. Item
np4i9 is a very difficult item. For completeness of the content

TABLE 4. Models Fitted to Each Content Area of the Data

coverage, however, all three items in set-/ and set-2 are in-
cluded in the analysis. The models fitted are summarized in
Table 4. Models were selected for each mathematics content
area on the basis of the goodness-of-fit index and the mini-
mal value of information criteria, which is given in Table 4.
In Table 4, models that show best fit are in boldface. For the
models of choice, all the fit indices and information criteria
gave consistent results. Generally speaking, an LC model with
two classes seems adequate to characterize the data for each
of the four content areas. For the content area data, only three
items are involved, so some constraints have to be imposed
on the parameters to identify the model. Specifically, the re-
sponse probabilities for item np4i9 were constrained to be
equal across classes. The class-specific response probabilities
for the other two items were constrained as equal within class
1, whereas those for class 2 were set free. The rationale for
choosing this pattern of constraints is that students in class 1
are viewed as nonmasters of the content area, with very low
probabilities of getting items right by guessing. Therefore, no
differences are reflected in item difficulty because guessing
does not relate to item difficulty. The model showed an ade-
quate fit to the data, as shown in Table 4.

Class probabilities and specific response probabilities of
items given class membership are presented in Table 5. For
most of the items, students in class 1 have probabilities that
are near the chance level. Given that each item has five op-
tions, the chances of getting an item correct by guessing is
about 0.20. This suggests that students in class 1 do not mas-
ter the skills or knowledge to solve these items in the four con-
tent areas. As such, we can call students in class 1 nonmasters.

Model AIC BIC CAIC G2 df p

Number and computation (4 items)

Unrestrained LCM: 1 13661.39 13684.97 13688.97 145.1 11 0.00

Unrestrained LCM: 2 13536.8 13589.9 13598.9 10.53 6 0.10

Unrestrained LCM: 3% 13540.55 13623.06 13637.06 4.26 2 0.04
Algebra (4 items)

Unrestrained LCM: 1 13789.23 13812.81 13816.81 452.78 11 0.00

Unrestrained LCM: 2 13353.1 13406.2 13415.2 6.68 6 0.35

Unrestrained LCM: 3 13359.09 13441.6 13455.6 2.64 2 0.10
Geometry (4 items)

Unrestrained LCM: 1 13445.54 13469.12 13473.12 50.85 11 0.00

Unrestrained LCM: 2 13409.5 13462.5 13471.5 4.8 6 0.57

Unrestrained LCM: 3 13418.44 13500.95 13514.95 3.75 2 0.05
Datab (3 items)

Unrestrained LCM: 1 9695.28 9712.96 9715.96 86.74 4 0.00

Restrained LCMS: 2 9613.51 9642.98 9647.98 0.97 2 0.61

Note. AIC = Akaike’s information criteria; BIC = Bayesian information criteria; CAIC = Consistent Akaike’s information criteria; LCM = Latent class model. Models in bold type
were selected for each content area on the basis of the goodness-of-fit index and the minimal value of information criteria.

aAccording to Dayton (1998), an unrestrained LCM with 3 latent classes for 4 items has 2 degrees of freedom, rather than 1 degree, as calculated in the model. bOne item from
data set-2, the other two items from data set-1. “Response probabilities of item np4i9 were constrained as equal across classes, whereas response probability of item np4i2 and

np4i8 were constrained as equal within class 1.
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Correspondingly, students in class 2 demonstrate higher prob-
abilities in correctly solving the items. We call students in
class 2 masters. Across all four content areas, students in class
2 have consistently higher probabilities of correctly solving
these items than students in class 1 do. This suggests a generic
difference in their mathematical abilities, rather than differ-
ences in specific content areas.

The size of each class within each of the four content
areas is also displayed in Table 5. Note that the sum of the
classes within a content area is 1, because all the students have
to fall into a class. More students seem to belong to class 1,
which shows low mathematical ability. This result is expected,
given that the population under investigation consists of stu-
dents with disabilities. For the areas of number and computa-
tion, about 80% of students belong to the lower ability
category, suggesting this is a difficult area for these students
in general. About 55% of the students have lower ability in al-
gebra, and about one half of the students have difficulty in
solving statistics. Note that for the content area data, the two
class-specific response probabilities for item np4i9 are equal
(0.163) across classes because they were constrained to be so.
The estimated response probability is very low, however, sug-
gesting that the item is truly a very hard item. Another con-
straint is set for the two response probabilities of items np4i2
and np4i8 within class 1. It is interesting that more students
belong to class 2 in terms of solving geometric items. In-
specting each item’s class-specific response probabilities re-
veals, however, that the probabilities of getting a geometric
item correct vary greatly across items, in terms of both the dif-
ficulty level and the differences between the two classes. It
appears that the differences of response probabilities for the
geometric items between class 1 and class 2 are generally
smaller than the differences in other content areas, which may
suggest that these items do not differentiate the students well.

Overall Analysis and Cross Validation. Combining re-
sults from all four content areas, data on all 12 items of set-/
were submitted to the program WINMIRA2001 to get an
overall picture of the latent structure that may exist in the data.
Unrestrained LC models with one to seven classes were fit-
ted to the data. Table 6 summarizes the goodness-of-fit indices
obtained from the parametric bootstrapping method and the
values of the information criteria for these models. Based on
the criteria discussed earlier, the model with two latent classes
is the preferred model. Table 6 also shows the corresponding
models fitted to data in sez-2. The same model was selected
on the basis of the minimal value of the information criteria.

Class proportions and item class-specific response prob-
abilities are depicted in Figure 2. Similar patterns of class-
specific response probabilities can be observed from the upper
and lower panels of Figure 2, which were derived from data
set-1 and set-2, respectively. Overall, the same structure ex-
ists in the two data sets, although some variations exist, most
likely due to the differences in specific item properties. Again,
note that the item response probability profiles across the two
classes are essentially parallel to each other, which suggests
that the differences between the two classes are primarily due
to the quantitative differences in their generic mathematical
abilities. Also, consistent with previous results, more students
(63%) belong to the class with low response probabilities,
given the special population in this analysis.

Relation Between Categories of Disability
and Class Membership

Accepting the model with two latent classes as the model of
choice, each student was classified into one of the two latent
classes. Table 7 shows the cross-tabulated data between dif-
ferent categories of disability and the classes. This is the re-

TABLE 5. Class Proportion and Item Class-Specific Probabilities for Models Fitted to Each Content Area

Class
Content area Item class-specific probability proportion
Number anq NPI1I3 NP3I19 NP2I12 NPI1I112
computation Class 1 0.280 0.243 0.276 0.244 0.793
Class 2 0.504 0.611 0.635 0.714 0.207
Algebra NP2I1 NP2I2 NP2I4 NP2I8
Class 1 0.611 0.356 0.267 0.172 0.551
Class 2 0.961 0.737 0.751 0.560 0.449
Geometry NP3I4 NP3I1 NP3I11 NP3I8
Class 1 0.533 0.356 0.181 0.36 0.483
Class 2 0.89 0.488 0.272 0.618 0.517
Data NP419 NP412 NP4I8
Class 1 0.163 0.218 0.218 0.506
Class 2 0.163 0.658 0.612 0.494
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TABLE 6. Models Fitted to the Data Set-1 and Set-2

Empirical p value using
parametric bootstrap method

Model AIC BIC CAIC Cress Reid Pearson 2
Set-1
LCM with 1 class 46955.26 47037.77 47051.77 0.000 0.000
LCM with 2 classes 45680.30 45851.22 45880.22 0.875 0.875
LCM with 3 classes 45600.11 45859.4 45903.4 0.625 0.575
LCM with 4 classes 45596.32 45944.06 46003.06 0.300 0.475
LCM with 5 classes 45599.85 46036 46110 0.35 0.425
LCM with 6 classes 45603.95 46128.51 46217.51 0.45 0.475
LCM with 7 classes 45586.16 46199.13 46303.13 0.225 0.475
Set-2
LCM with 1 class 44416.76 44499.28 44513.28 0.000 0.000
LCM with 2 classes 42967.22 43138.14 43167.14 0.275 0.375
LCM with 3 classes 42882.48 43141.8 43185.8 0.175 0.275
LCM with 4 classes 42869.75 43217.49 43276.49 0.025 0.250
LCM with 5 classes 42869.38 43305.53 43379.53 0.05 0.275
LCM with 6 classes 42867.29 43391.85 43480.85 0.075 0.250
LCM with 7 classes 42868.1 43481.07 43585.07 0.125 0.350

Note. AIC = Akaike’s information criteria; BIC = Bayesian information criteria; CAIC = Consistent Akaike’s information criteria; LCM = Latent class model. Boldface indicates

minimum values.
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FIGURE 2. Class-specific response probabilities of items
for each content area of set-1 and set-2. Note. Upper
panel = set-1; lower panel = set-2; 1 = Number and
computation; 2 = Algebra; 3 = Geometry; 4 = Data.

sult from the LC model with two latent classes, based on the
data set-1. Consistent with earlier results, class 1, which
shows low mathematical ability, consists of 1,697 students,
about 63% of the whole data set. The remaining 984 students
in class 2 show relatively higher mathematical abilities. Most
of the disability categories have more students in class 1. This
suggests that this population of students with disabilities
shows low mathematical ability in general. The distributions
between lower and higher mathematical ability are not uni-
form across different categories of disability. The distribution
across the two classes has a significant relationship with the
type of disability, xz(l, N =2,681)=69.08, p <0.0001; after
adjusting for cell counts, X2(9, N =2,681) = 62431, p <
0.0001. The adjusted residuals for cell counts are also pre-
sented in Table 7. These residuals are the differences between
observed frequencies and their expected values within each
cell, adjusted in such a way that each adjusted residual has a
large-sample standard normal distribution (see Note). There-
fore, an adjusted residual that exceeds about 2 or 3 in absolute
value indicates a great discrepancy between the observed fre-
quency and its expected value. The sign of an adjusted resid-
ual reflects the direction of this discrepancy. A positive value
means that there are more observed counts than expected
within a given cell, and a negative value means the opposite.

A few categories of disability show large discrepancies
between the observed and expected frequencies, such as men-
tal retardation, speech and language impairment, and visual
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TABLE 7. Special Education Category and Class Membership

Membership
Class 1 Adjusted Class 2 Adjusted
Special education category (0.624) residual (0.376) residual Totals
Hearing impairment 13 -0.41 9 0.41 22
Visual impairment 3 -2.48 8 248 11
Speech and language impairment 353 =541 296 541 649
Physical impairment 11 0.45 5 —0.45 16
Specific learning disability 818 1.69 441 -1.69 1,259
Emotional disorder 91 -1.33 65 1.33 156
Mental retardation 63 5.29 -5.29 67
Autism 13 -0.41 0.41 22
Traumatic brain injury 5 -0.87 0.87 10
Deaf/blindness 1 0.76 0 -0.76 1
Noncategorical 190 1.93 87 -1.93 277
Other health impairment 136 2.35 55 -2.35 191
Totals 1,697 984 2,681

impairment. Students with mental retardation are more likely
to show low mathematical proficiency as compared to stu-
dents with other special needs (the adjusted residual is 5.29).
On the other hand, mathematical ability for students with speech
and language impairment or visual impairment is not affected
as severely as other impairments (the adjusted residuals are
—5.41 and -2.48, respectively). Specific learning disability
also seems to have a relatively severe impact on students’
mathematical ability (the adjusted residual is 1.69). Other
health impairment also shows a negative impact on students’
math abilities. Further information would be needed, how-
ever, about the specific characteristics of students in this cat-
egory before any substantive explanation could be offered.

Discussion

In this study, LCA of a comprehensive test of mathematics
taken by students with various disabilities reveals that the model
with two latent classes is adequate to characterize the latent
structure of the data. Although variations on class-specific
response probabilities of items are observed, the same conclu-
sion can be made on the basis of the results from cross valida-
tion on a separate data set with careful matching of content areas
within the math test. A parallel relationship was observed be-
tween the class-specific response probabilities of each item
across the two classes, which suggests that students within one
class have consistently higher levels of mathematical perfor-
mances than students in the other class and thus do not ex-
hibit nonparallel profiles of mathematical skills. This leads to
the conclusion that the differences in the two latent classes are

quantitative rather than qualitative in nature. Although stu-
dents in class 1 do not possess the proficiency to solve these
math items, students in class 2 do, which reflects general dif-
ferences in mathematical abilities between the two classes.

These results were not initially expected. The initial hy-
pothesis was that qualitative differences in terms of math skills
or cognitive abilities would be delineated in the profiles of the
various classes. For example, one class might be good at solv-
ing some categories of items, whereas other classes would be
better at other categories. Results obtained from this analysis
indicate that this is not the case, at least for the data set under
investigation. Students in some groups, such as those with
cognitive impairments and specific learning disabilities, per-
formed worse overall, whereas those from other groups, such
as speech/language or perceptual impairments, tended to be
distributed across both classes. No distinctive profiles among
different categories of special education students were found,
however, in either set of items, other than a generic difference
in terms of overall mathematics proficiency.

Further investigation of the relationship between the dif-
ferent categories of disability and their class membership
showed some general patterns of achievement for math abili-
ties across disability categories. Students with mental retarda-
tion tend to have proportionally lower mathematical abilities
than other categories of disability, and students with speech
and language impairment and visual impairment tend to have
higher mathematical abilities. These results are consistent
with, and confirm, the identification criteria for the disability
categories. Students with mental retardation are identified, in
part, by their general low cognitive functioning with respect
to peers. Therefore, greater representation in the lower math
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achievement group would be expected. Identification of speech/
language and perceptual impairments does not imply lower
cognitive functioning, and greater proportional placement in
the higher achievement group of math ability would also be
expected. The key finding is that lower achieving students in
math perform like other low-achieving students in math re-
gardless of disability classification.

Although results from this analysis do not conform to ini-
tial expectations, they provide important information about the
initial research questions. Do different categories of disability
differentiate students from each other in terms of mathematical
ability? What is the nature of such differences? Results from
this study show some evidence of the differentiating effects
of mathematical abilities in different categories of disability.
The differences among different categories of disability, how-
ever, are not in terms of types of skills but more in terms of
general skill level. It appears from these data that students in
different disability categories who need remedial mathemat-
ics instruction are more alike than different in their general
levels of mathematical proficiency and in their responses to
specific types of mathematics problems. Although this study
did not address instruction, this outcome seems to confirm
earlier ATI research that did not support different instructional
interventions for special education students with aptitude dif-
ferences except with respect to overall cognitive functioning
(Cole, Mills, Dale, & Jenkins, 1991). This result also echoes
research in reading, which has identified the same remedial
interventions as most effective for students who lag in reading
proficiency, regardless of special education status (Francis,
Shaywitz, Stuebing, Shaywitz, & Fletcher, 1996; Shaywitz,
Fletcher, Holahan, & Shaywitz, 1994; Siegel, 1989; Stage,
Abbott, Jenkins, & Berninger, 2003; Stuebing et al., 2002).

When considering the results, some limitations of the
study should be taken into account. First, the current study is
limited to mathematics performance of students with disabil-
ities in the fourth grade. Although the data set is adequately
large and the numbers for most categories of special educa-
tion within the data set are acceptable, similar analyses on data
sets at various grade levels are desirable before these conclu-
sions can be confidently asserted. Second, although the hy-
pothesis that different cognitive characteristics, rather than
categories of disability, serve as primary sources for hetero-
geneity in the special educational student population is a vi-
able one, more measures of cognitive functioning are needed
to understand adequately the relationship between cognitive
characteristics and categories of disability. The current study
is part of a larger project designed to investigate these issues
more comprehensively. Replication in other academic and
cognitive areas will be required.
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NOTE

The adjusted residuals are calculated by the following formulae: Let
Res;; stand for the adjusted residual in the cell at the intersection of
row i and column j of the contingency table, then

nij — ijj
Jig(1 = pi)(1 —py)

Resij =

where 1;j and 12,-]- are the observed and expected frequency in the cell,
respectively. p;, is the marginal proportion of frequency in row i,
across all the columns of j, j=1,2,...7J, and P+ jare the marginal
proportion of frequency in column j, across all of the rows of i, i =
1,2,...L
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